68k2 ISA 64 Bit Design

Introduction

A 64 bit processor ISA based on the 68000. Similar in some ways to the “coldfire”, but extended to
have a more friendly and general implementation. Not all “old” opcodes are supported, and some
instructions are recoded to better fit with a consistent 64 bit extension of the 68000 ISA. The is a
specification and a speculation document. The processor may not be available. Be free to produce
FPGA implementations of the ISA. The assembler level is a subset, and some instructions would
have to be emulated or inlined as sequences of simpler instructions.

Addressing Modes

The following changes are made. The XXX.W mode is replaced by a (An, d32) mode for a 32 bit
displacement. The 111 101 special register mode gets meaning being a (PC, d32) mode. The 111
110 mode accesses the SR, and the 111 111 mode accesses the CCR. That completes all changes to
the addressing modes. The immediate mode is still special when used as a destination. Sometimes it
does not make sense to use direct An, Dn, SR and CCR modes when an address is required.
Sometimes the direct An is not used so as to free instruction space for other instructions.

The most important change to addressing is the operation of the d8 displacement modes, and a
different full extension word format. A potential 24 bit displacement option is available by setting
d24 and appending another low word to the high byte displacement. The Dn register is pre-
multiplied by the operand size, which would be 1, 2, 4 or 8. This sets the alignment.

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

SHS DS Dn d24 Displacement d8

The resulting indexing is (An, Dn<<{size-16*SHS}.{DS<<size}, d8/24) and is flexible for arrays of
primary data types. Where there is some sub-select potential to limiting the width of the D register
used in the calculation. The SHS essentially performs a D register shift right by a size, to allow
splitting D registers into a number of indexes. This is better written (An, Dn>SHS.DS, dX) to get
rid of confusion. The data transfer size comes from the instruction, not the addressing mode.

Operand and Transfer Sizes

Sometimes not all four sizes are available. Byte (00), word (01), long (10) and quad (11). If the size
field is one bit, only long and quad are available. The general MOVE instruction format remains
almost the same, but does not have a byte transfer size for example, and it never did. The workload
of moving data keeps this an important large part of the opcode space. All other opcodes are more
limited in addressing. See later for MOVE.B.

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 size Src reg Src mode Dest mode Dest reg

The rest of the lower quarter of the opcode space is mainly short immediate mode dyadic opcodes.
There is no sense in immediate mode destinations, and BTST is the exception needing a source
only. The general MOVE instruction also has no sense in an immediate mode destination. The
operand order was changed to assist in hardware decode of nonsense destination modes, for fast
alternate instruction tracking, not for fast write pre-selection. A sweep through code, skipping
unreachable, perhaps PC relative embedded data, would make 68000 MOVE codes easy to
transform.

The rest of the lower quarter instructions will also accept An as a register to operate on, unlike the
68000. They have the following general format. I(0)/B(1) selects either immediate or bit operation.

15 14 | 13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Opl/Dn I/B | Size/op2 mode reg

For B(1), op2 selects either BTST(00), BCHG(01), BCLR(10) or BSET(11) as the operation, and
Dn that has the bit count in. If the immediate mode 111 100 is set, and I/B is set, and size is not
zero, then something can be done to the register Dn. These are assigned EXT as a from to byte sign
extend to word, word to long, and long to quad. EXT.W/L/Q as needed. A useful operation set
when using register part packing.

For 1(0), there are a number of sized immediate data operations.

11,10 9 Operation “111 100” 7 6
0] 0] 0 ORI ? size
00 1 ANDI ?

0|1 0 |SUBI BIGN

01 1 ADDI PSHC

1| 0| 0 BTST/BCHG/BCLR/BSET immediate not register % EXT op2
1101 EORI ? size
11| 0 | CMPI TRAPV

1| 1| 1 MOVEC not immediate % RTE/ILL op3

The op3 is defined as ADDR(00) and DATA(01) as write, and STATUS(10) and DATA(11) as read.
The ADDR and DATA actions have no issue with an immediate via 111 100 source, but the other
two do, as they expect a destination. They are fully defined bit patterns. Yes, that’s right MOVEC
as there is no MOVES on this design. To place two other supervisor only instructions here is nice,
and cleans up the later opcode space. So the match for STATUS using 111 100 is RTE. The match
for DATA using 111 100 is ILL or ILLEGAL. The data and the address of the control registers are
supplied using different opcodes, and the address auto-increments on data access.

Return from subroutine RTS and the related RTR are assigned new opcodes on 111 100
destinations to remove some overcrowding later on in the opcode space. A new instruction PSHC
pushes the CCR on to the stack. It is joined by BIGN which places the PC on the stack but
continues in execution. This is useful for looping constructs. RTD and TRAPYV also make an
appearance.

0100 Miscellaneous

This section has been juggled significantly, and also has many omissions. The most general of not
omitted is LEA as it has an instruction format like the following.

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 Destination reg op mode reg

There is no invalid meaning in the immediate mode, as it just fetches the PC+2 as that is the
address of this immediate data. There is however issue with the An and Dn addressing modes as
they have no conceptual effective address. Bit 8 controls a lot. When zero the destination reg is
replaced by a secondary op, and bits 7 and 6 become size as per usual. The MOVEM use pointers
and not effective addressing. The pointer is fetched before the pattern of masked register bits. It’s all
very pointer PC++ for assembling.

1 |10 | 9 8 7 6 Operation 111 100 An/Dn(bit3)
0 0 0 0 size NEGX RST
0 0 1 0 size CLR STOP
0 1 0 0 size NEG ?
0 1 1 0 size NOT ?
1 0 0 0 size MOVEM load (64 bit) | Uses operand as pointer indirect
1 0 1 0 size TST
1 1 0 0 size MOVEM save (64 bit) | Uses operand as pointer indirect
1 1 1 0 0 0 |PEA See later Below!
1 1 1 0 0 0 |LINK uses An not Dn Dn(0)
1 1 1 0 0 0 |UNLK An(1)
1 1 1 0 0 1 |JTR Uses operand as pointer indirect
1 1 1 0 1 0 |JMP Uses operand as pointer indirect
1 1 1 0 1 1 |JSR Uses operand as pointer indirect
Dn 1 0 0 |MULQ (64*64 bit)
Dn 1 0 1 | DIVQ (64/64 bit)
Dn 1 1 0 |CHK
An 1 1 1 |LEA See later Below!
An 1 1 1 EXG Dn(0)
An 1 1 1 EXG An(1)

The new opcode JTR is “jump threaded routine” and it performs an extra level of indirection before
the JSR implicit and forced to happen after. The EXG Dn,Dm is covered later. CHK has byte
mode and can use an An as the bound. DIVQ and MULQ are by default and design unsigned. The
modification of the RTE instruction to have state information can accelerate the exception exit.
There is not much use for this bit pattern otherwise.

Please note well: Uses operand as pointer indirect, means exactly that. JMP #$xxxxxxxx is valid.
The 68000 would use effective address and not fetched content. LINK is d16 version only.

0101 ADDQ and SUBQ

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 literal A/S size mode reg

The A/S bit selects add or subtract. These instructions work as advertised in the 68000 ISA
reference. The only difference being a quad word mode, and the fact that using address registers
may be part used, if the quad word size is not specified, and byte size is possible. This allows
packing data in address registers if required.

When the 111 100 immediate addressing mode is used, the following instruction is executed instead.
The lack of a version using address registers or mixed type is not too big a problem. If register
pressure is that high, you likely need a wide vector unit. It is more for getting the registers in line
with calling highly optimized subroutines with specific register assignments after a long sequence
of calculation. Compilers do not usually use it. Also it was covered earlier.

1 | 10 | 9 8 7 6 Operation

Dn Dm EXG exchange 64 bit data registers.

0110 Branching Out

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 condition offset

16 bit if offset = $0

32 bit if offset = $ff

There are no changes here. It’s 68000 all the way, including BRA and BSR.

0111 MOVEQ

General MOVEQ instructions can only use immediate bytes. It would be possible to set a d24
immediate on MOVEQ. The d24 bit in this case loads in another immediate word to form the low
two bytes of a 24 bit immediate. The immediate 8 or 24 bit is sign extended to a 32 bit long. The
rationale being the high long in the register would possibly be a packed long for “quick” code more
often than not. EXT.Q can always be used on the off chance.

15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Dn d24 Immediate d8

That completes half the instruction opcode space. There are some omissions (TAS, MOVE USP,
BKPT and NOP) which are still options on the table.

1000 OR and DIV

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Dn L/A size mode reg

The L/A bit selects logical OR or DIV in various forms. There is no memory modification form of
OR, such that it is. This is alright for the added flexibility of DIV, and not BCD instructions here.

When the DIV is selected by bit 8 being 1, the size bits are used differently. Bit 6 selects between
L(0) and W(1) forms, and bit 7 selects S(0) and U(1) choices.

L w

64/32 - 32132 32/16 - 16116

1001 SUB

15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 Dn X size mode reg

The full featured subtraction. The X bit when set switches on the subtraction of the extend bit.
There is no write back to memory version as size can be SUB.Q for the general case, including An.

1010 Customizations

The ISA does not have a trap vector for A. As a decision to depart from exact encoding was made,
there seems little point in reserving such a large opcode space when the instructions are getting
dense. It is not a compatible processor, but a similar processor, easing emulation and extending
ability. The simple float processor is placed on the A line. The An register direct addressing mode is
set aside to map onto Fn for efficient use of an instruction decode structure. The Dn register direct
addressing mode does integer to floating point conversions. It is the main way of loading
information into the FPU.

The FPU does not necessarily use an IEEE exact algorithm. The aim is to speed up general floating
point processing, and not to replace an advanced vector unit.

15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 Fn operation mode Reg

8 7 6 Operation 111 100 immediate addressing
0 0 0 |FLD (load Fn)

0 0 1 |FSV (save Fn) FIRT (inverse root)

0 1 0 |FSUB

0 1 1 |FADD

1 0 0 |FMUL

1 0 1 |FDIV

1 1 0 |FATNZ2 (divider <ea>)

1 1 1 |FPOW (base <ea>, -ve is FLOG)

1011 EOR and CMP

15 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Dn L/A size mode reg

The L/A bit selects logical EOR or CMP in various forms. There is no memory modification form
of EOR, such that it is.

1100 AND and MUL

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Dn L/A size mode reg

The L/A bit selects logical AND or MUL in various forms. There is no memory modification form
of AND, such that it is. This is alright for the added flexibility of MUL, and not BCD instructions
here. When the MUL is selected by bit 8 being 1, the size bits are used differently. Bit 6 selects
between L(0) and W(1) forms, and bit 7 selects S(0) and U(1) choices.

L w

32*32 - 64 16 *16 - 32

1101 ADD

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Dn X size mode reg
The full featured addition. The X bit when set switches on the addition of the extend bit. There is no
write back to memory version as size can be ADD.Q for the general case, including An.

1110 Rotations

Operation 1514 | 13 (12 |11/10/9 | 8 | 7 | 6 |5 4 3 2|1 0
ASL/ASR 1|1 1 0 | Count/Dn |L/R| size I/R| 00 reg
LSL/LSR 11 1 0 | Count/Dn |L/R| size I/R| 0 |1 reg
ROXL/ROXR | 1 | 1 1 0 | Count/Dn |L/R| size IR 1 |0 reg
ROL/ROR 1] 1 1 0 | Count/Dn | L/R size IR 1 |1 reg

There are no size restrictions, and the instructions follow the 68000 ones.

1111 A F* Colliderthon

The while of the opcode space up to this part all has effect. There are some race conditions (or
override selections), and this will generate some open opcodes. The main culprits are things like
idempotent moves, but more of an option for NOP with an understanding the synchronization
mechanism is different than read modify write instruction atomicity. The more important ones are
double write ordering compatibility. These can be given unambiguous meaning, via instruction
assignment of benefit, or side note of curiosity.

They ALL occur with pre and post decrement and increment instructions. As the order is read before
write, double operands using the same -(An),(An)+ structure can have definite meaning. Similar for
+(An),(An)- even though they are both low quality code. -(An),An and (An)+,An are special in the
sense the first is fully defined, and the second is error.

15 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
0 0 Size3/4 An 0 0 1 0 1 1 An
0 1 0 0 An 1 1 1 0 1 1 An
0 1 0 0 1 0 0 0 size 0 1 1 An

These are the free opcodes so far as defined by the consistency criterion. So 64 opcodes. So from
the above some more operation codes can be created and defined.

14 8 Size An bit # Operation

1 1 <Null> <Null> |SWAP use Dn not An

0 0 00 <Null> |See later

0 0 01 <Null> |BKPT An is breakpoint number
0 0 10 <Null> |MOVE to USP use Dn not An

0 0 11 <Null> |MOVE from USP use Dn not An
1 0 <Any> 1 SYNC

The thing about the last one with bit 14 set is that the exception will not occur before the literal
immediate has been fetched. This means the instruction has already passed decode, and has finished
some bus cycles. Specifically it has loaded some data from an address PC+2 (or where the PC is
may have changed, and the load has been committed to cache. It also seems good for a lock wait
mechanism, as the thread can be identified by the An in the instruction, and bit shift operations can
be mutually used by a number of threads to rotate the “lock” into an exception. No requesting task
would want to prematurely unlock another thread. Hence SYNC as an instruction.

1111 The F Slot Really

The F line has a 3 bit coprocessor field in the hope that there would be 8. As I understand it the
MMU hangs about on 000, and the IEEE FPU hangs about on 001. Cache management appears on
010. Everything else is somewhat “non standard” by origin.

ID Standard Use
000 MMU do not assume fitted

001 FPU (IEEE) do not assume fitted

010 CACHE do not assume fitted

011 MOVE16 do not assume fitted

In light of the openness of the 68k2 ISA, those four coprocessor IDs are left vacant. With
interesting angles on cache design for low area and high speed, there is a need to analyse the
required cache management instructions. The only instruction which readily stands out as needed, is
one such that the data model of a program can be converted into a programmatic instance, which in
turn is capable of being loaded into L1 cache. FLUSH is covered later.

With a cache which invalidates on other core writes, some of the issue is sorted if another core loads
in the code. With that type of cache there is no mechanism implicitly for flushing a core’s own I
cache. The restriction of having to snoop and invalidate on the I cache is lifted if the CPU write bus
end of the I cache is retasked in hardware to respond to opcodes.

FLUSH is a supervisor only instruction. PC relative writes use the I cache, and a “cache line flush
via reload” from L2 is less silicon area. It prevents the need for I cache write back buffers to L2. All
PC relative write is thus performed into the D cache.

The F line slot remains free for system expansion. This is good. The whole immediate 111 100
instruction space has been filled in, with two exceptions covered later when the large table of future
allocatable 32 and 48 bit instruction extension space is drawn up.

More on Address Modes

It was pointed out earlier that JMP, JSR, JTR and MOVEM use and extra level of indirection
beyond the 68000. There is less “control mode addressing” issues, and that is made purely LEA and
PEA which both just get a reference. There’s my two references joke on the horizon! The direct An
and Dn modes of these two instructions were also covered. There is however an expansion
possibility realised by the implementation of the following addressing mode, which although
looking complete includes some redundancy, or more particular some valid combinations which
produce no extra effect beyond that produced by some other combinations.

The (PC,d8) mode still has 3 unused slots. Here is the d8 word again. The reason is because a word
shift right removes some high bits, and so wider specifiers only add leading “zeros”, or more
exactly sign extends.

15/ 14 |13 12| 11 |10 | 9 | 8 7 6 5 4 3 2 1 0
1, 0 | 1| 1 |PC#d12 or An#d12 a displaced PC or An immediate mode

1] 1]1]0 Dn d24 | ((PC,Dn)d8) ((PC,Dn)d24) ((An,Dn)d8) ((An,Dn)d24)
171 /1)1 Dn d24 |((PC,d8)Dn) ((PC,d24)Dn) ((An,d8)Dn) ((An,d24)Dn)

And if the PC#d12 or An#d12 mode is a destination? Treat the same as immediate, supplying 2
extra opcode possibilities. Without using any of the F line.

The ((PC,Dn)d8), ((PC,Dn)d24), ((An,Dn)d8) and ((An,Dn)d24) modes add in a displacement,
after one indirect. The modes -(An) and (An)+ are valid in the 68k2 as they have an address
generated, just not recalled, but the addressing arithmetic is done, even on instructions they were
not valid on before.

So now seems a good time to build a table of all the remaining opcode space. As this will be useful
when considering extensions to the instruction set.

MOVE.B Slow Form and Open Instruction Space

Adding back in this instruction for cases where it’s needed, usually IO, is as easy as assigning it to
the PC#d12 mode on PEA, and using the d12 as the source and destination, with the modified
order of destination specification is in the low six bits, and source in the higher six bits of d12 to
simplify reassembling code using MOVE.B.

For consistency it should now be considered what the #d16 (or #d32 or #d64 with MOVE.L or
MOVE.Q) mode should mean when it is a MOVE destination, as this was not covered earlier.

Under Mode | Becomes Features Extras Length (bits)
PEA PC#d12 |? 12 bits 32
PEA An#d12 |? A register spec, 12 bits 32
PEA #d16 RESET None 16
LEA PC#d12 |? A register spec, 12 bits 32
LEA An#d12 |? Two register specs, 12 bits 32
LEA #d16 FLUSH An | Register contains address to I cache flush 16
MOVE #d16 See later A complex issue with 0000 group 32/16
FSV PC#d12 [FSCC Some FPU decode connect 32
FSV An#d12 |[FMCC Some FPU decode connect 32

As can be seen there is plenty of ISA expansion space in the 32 bit opcodes. All currently
unassigned raise an exception. An “unresolved instruction exception” so that the instructions set can
be expanded without using up coprocessor IDs on the F line. This replaces the A line exception.

Well those were some complexities of fitting a mostly translatable ISA into a 16 bit word format.
Quite a lot of the 68020 instructions were removed in favour of 64 bit consistency without
expanding the instruction width. There is even good reason to perform various simple mappings
between the old and new ISA as automated tools tend to be better, the closer the domains of input
and output. The biggest problem I can see is with calculated jump vectors. The automated tool can’t
know if the address will remain the same if the instructions differ in size.

Having fewer size differences helps as the instruction byte counting will remain closer to the
original, and so have less code to check via other methods. Any code block not containing certain
instructions (using certain addressing modes) can be ruled out for advanced processing. It maybe
later optimized after profiling to use the more advanced addressing mode options and fewer
restrictions on addressing modes.

Relocation Addressing

From earlier it was noted that JMP #$xxxxxxxx to assist in code conversion of JMP (xxx).L but
loaders tend to use PC relative code for compilation for good reasons of relocation of code. In a non
MMU context this is the best way of making position independent code. Not using effective
addresses has the consequence of leaving just the mode PC#d12 for 4 kB bounding.

When using the (PC,d32) mode for example to replace an old jump pointer, the indirection can be
altered to within a relocation table due to the indirection, placed at the end of the code. This costs

three times the memory in most cases, but the differing instruction coding lengths can be taken up
by having an altered number, and provides a fast translation “up” time.

A (An,d32) would work for indirect JMP (An) conversion, used in calculation of jump tables, if it
were (getting the subjunctive) not for the indirection. Of course a straight JMP An would not be
sufficient as some opcodes are of differing implementation length. Having the extra indirection step
help in building the “instruction length matcher” jump table, as well as making the instruction set
more consistent.

As the 68k2 is 64 bit a 64 bit jump should be done via MOVE.Q #xxxxxxxxxxxxxxxx, PC#0
perhaps. It would work. A 64 bit indirect jump would be done perhaps by MOVE.Q (PC, Dn>m.B,
d24), PC#x as there is not many others having the compact table and range to the table. This also
puts the calculation in Dn there from the start. The constant x can be used to select from an entry
table. Stacking a 64 bit PC would have some unexpected effects for non normalized code. A 32 bit
JSR would here be useful. Thankful for stack frames?

Waffle “The Language?”

What’s the difference between an inner function in an extended outer function and a class OOP
design. Losing one An for tracking the class parent. Of course outer extended functions could only
be allocated stacked order by call. Does this make Java’s “new” keyword a task instantiation future?
Given encapsulation is supposed to give a lot of the things needed for multi-threading ... you
decide. Even pointers to tasks are easy, just no self reference rings.

This should be easy. How about an intrinsic data type for circular reference. A list node which can
reference anything, but can’t be extended as it’s “final”. Reference counted, and all other types not
for a data saving. Always try to sort themselves on a sort chain to precede what they refer to, get
marked sorted unless repointed. Any sorted not able to precede marked circular, and never resorted
unless repointed. Well not brilliant, but definite improvement in the GC search size.

If the methods of “list” class/function are all written in a specific way, stack bound provability is
also possible. Especially if an “inner final” class/function extends list and marks an invisible node,
such that consistent lists are always made. Each list as it were has an “ID”, and no cross joining.
Similar constraints for tree objects would be good. This allows referring to any list node, and any
list node to be (contain) any object. That’s what lists do. Of course, list processing becomes slower,
as each list element must also hidden point to its owner inner final, and that in turn to its “inner
inner final” unification group. The “inner final” keeps the reference counting done.

Why this? Well, for checking out possible instruction optimizations for OOP. (An, Dn, d8/d24).

Implicit Displacement Size

In (An, Dn, d8/d24) the displacement always being a byte is crazy. The size of the transfer should
have an effect on all transfers. This effectively increases the range for .Q to an 11 bit offset aligned,
and a 27 bit offset respectively. The area overhead is minimal, and would allow multiple extra fast
access slots in objects.

The question of the relevance to d24 transfers is moot in the 16.7 million bytes. Even the d8 offset
at 256 bytes is a lot of “locals”, and although an 8 bit shifter is minimal area, it’s in the lower bits
and carry look ahead would be slowed for timing closure. For consistency with other modes it is not
used. This maybe considered a bad idea later, but it does improve the ease of mentally getting an
address when coding.

The ((An, d8)Dn) and similar double indirect modes, are very useful that way round for array
indexing. This is far superior to the addressing ((An, Dn)d8) suggested in earlier versions of this
document. In fact a fabulous mode. Full on super, smashing, great. The mode ((An, Dn)d8) and

similar may not be as useful. They do allow dynamic table indexing in a different way, with static
element index recall of multiple tables, instead of dynamic recall of a single statically selected table.

Put that way it does sound a bit like and array of object iterated over a fixed instance variable.

A little FPU

The two extensions of the ISA under FSV are now allocated. They are FSCC and FMCC which are
FPU set condition code, and FPU mask condition code. The d12 is the condition code bits, and the
An in the FSV coding An#d12, becomes a Dn to read the condition code into. It will be noted that
there is an Fn register spec too. This is register to which the condition code applies. So each register
has a 12 bit code, which can be altered to perhaps clear errors or set result precision.

The mask feature on FMCC has the effect of zeroing out any bits using “or” which are not of
interest, and only returning the wanted bits for a quick test. The FPU will stall if information is in
flight. A small instruction queue would be good for better issue order of addressing operands
without a stall of the main CPU execution pipeline. The synchronization point and perhaps wait
stall occurs when information is needed back from the FPU.

The FPU does either of the threads on the core, so a stall and thread switch is not necessarily going
to stop the FPU, so the FPU has 16 registers in real terms!

11 10 9 8 7 6 5 4 3 2 1 0

N NaN LP A\ Z BR DN

Where N is negative, NaN is not a number, LP is loss of precision when two close numbers are
subtracted and such, it is a count of the number of lost bits, and saturates at 31. Then V is overflow,
and Z is underflow. Note that N and Z can both be true. A register can be quickly zeroed or voided
by setting Z or NaN, or set to infinity by setting V. BR is the would have been best rounding mode,
covered later. DN is set if the register is denormalized.

When setting the register some bits have a different function such as D for direct output to bypass
integer to float and float to integer. AP if not zero sets the acceptable LP before the register goes
NaN all automatically like. R is the rounding mode to set. The I bit is a convenience bit to store an
integer within the register for use as fast store for the CPU. The FPU operations treat it as NaN
paradoxically, as there is no auto conversion coercion. The M bit sets the register as Gaussian noise
Monte-Carlo style, SD write, and stats read.

11 10 9 8 7 6 5

=~
w
N
[y
<

D I AP \" Z R M

Of ORI and Friends

The need to access and change some global context, without loading it in? There location in a quite
almost perfect move anywhere structure is strange. But bytes moving versus immediate action on
data using 1 instruction? Thinking about pipelines gives the IN to OUT, versus IN to ALU to OUT
paradigm. A pipeline match says put those at some other place.

So if them ops are moved to the MOVE.B current assignment full orthogonal MOVE is done.
Detecting an immediate on the MOVE destination opens the possibility, of NOT placing them at the
current MOVE.B assignment, but on the #d16 word. One advantage of this is the pre-decoded
source register and addressing mode specification, which can start the fetch if it itself is not #d16
(or other depending on size) immediate. This “frees” 8 bits (including size), and adds another 2 bits.

The bit 8 at zero forms are the most useful with ADDI and others, along with the non register forms
of the bit operations including BTST. The registered form of the bit tests are not that useful for
global flags. The indexing is pitiful too. So this then gives the following table.

15 14 | 13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Q | I/B | Size/op2 Op1/Dn d24 d8

The Q bit essentially is best purposed to assist in the counting of trailing literal words.

15 | 8 Literal
0 0 |d8

0 1 |d24

1 0 |d40

1 1 |d56

For the register mode BTST and other bit set and clear ones, the Q is free, along with d8 and d24
for other possible use. For optimality RTS and other return instructions would have to be first in
line for the double immediate MOVE case, and not trailing literal. If the immediate forms of the bit
instructions were combined into the registered forms by retasking so, with register enable.

15 14 | 13 | 12 11 | 10 | 9 8 7 6 5 4 3 2 1 0

BE | 1 op2 Dn En w bit

The flag BE would indicate the bit end to start at 0 for 0, 1 for 63. W would be a word shift similar
in application to Dn>>16*W for effect. The extra xxxI instruction to add? Something for a PC#d12
destination perhaps with the d12 subtracted off? NTAI is a nice negative test then “not” and add if
so immediate else do nothing. MOVEC also has to move? The d8 provides the address number? A
write after saving the read? An exchange for task switching? Yes. All the ANDI #d16, #d16 have
little use when strength reduction happens. There are 4 of 16 bit opcodes that can be mapped RTS,
RTR, RTD and RTE for some consistency.

Using offset arithmetic on PC#d15 and An#15 modes in reverse, gets the displacement subtracted
(but added is better to do) when going in reverse. This adds lots of useful displacements and jump
summation targets. That would be good, so yes.

There is an extra F* address source destination overlap created by aligning the MOVE.B with the
others. This is allocated to TRAP with the An used as the trap number. This supplies 8 traps. This is
a lower number than on the 68k, which has 16. Usually OSes have more than 16 calls, and so use a
splitter in general, and base the split on the needed system state to spin up. I think 8 is enough.

There a just a few odds and ends left for filling in the 111 100 or #d16 as destination mode. Not all
instructions have destinations with this mode. The reduced availability table follows, with the main
opcode blocks, and no reference to the odd small groups.

Under Mode | Becomes Features Extras Length (bits)
PEA PC#d12 |GTHR See later 32
PEA An#d12 |? A register spec, 12 bits 32
LEA PC#d12 |? A register spec, 12 bits 32
LEA An#d12 PSO Uses Dm not An 32 /48
PSO #d16 See later Immediate 3 operand 96/ 112

The 2™ and 3™ row as a pair cry out for an A/D reg selector, a reg and 12 bits perhaps for 2 more
operands. But that would not leave any room for the operation selector. To cut down on bus cycles
row 4 could be a 2 input 1 output op, with 6 bits to spare. Such that the expansion word is as below.
As a pseudo op PSO for ease until opcodes have been decoded upon.

15 14 | 13 12 11 | 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op msk size mode reg

The table of ops should include ALU things like the xxxI but in xxx3 form. The msk bit selects a
further “and” mask loaded from the instruction stream. The full quad is processed, but carry can be
suppressed between sizes by SUBS3 and ADDS3 for some kind of vector extension. The size
argument sets the “split” of where the condition codes come out of the lower bits, and also suppress
the carry (if requested) over the split.

15 | 14 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Dn .B selectors Dm .B selectors

There are also 111 100 ops which work on 2 registers. In this case the immediate quad operand,
coming before any mask word, becomes exchanged with Dn before the operation, and the result
goes to Dm for immediate, with Dn not actually changing in value.

J—
[
J—
(=]

Operation “111 100”

OR3 Excellent!
AND3
SUBS3
ADDS3
NTA3
EOR3
MULH3
1 |MULL3

O |~ | O | = O = O

== == OO0 OO
R =k O O0O|F |~ OO

A GTHR gather instruction takes the following, with size deciding how many times to “iterate the
source mode reg to fetch” enough size arguments to fill Dn. If the size field specifies a quad
transfer, this is remapped to provide bit to byte expansion. The L/B flag does either little or big
endian.

15 14 | 13 | 12 11 | 10 | 9 8 7 6 5 4 3 2 1 0

1 0 1 1 Dn L/B size mode reg

This makes a reasonable vector processor for small scale use.

	Introduction
	Addressing Modes
	Operand and Transfer Sizes
	0100 Miscellaneous
	0101 ADDQ and SUBQ
	0110 Branching Out
	0111 MOVEQ
	1000 OR and DIV
	1001 SUB
	1010 Customizations
	1011 EOR and CMP
	1100 AND and MUL
	1101 ADD
	1110 Rotations
	1111 A F* Colliderthon
	1111 The F Slot Really
	More on Address Modes
	MOVE.B Slow Form and Open Instruction Space
	Relocation Addressing
	Waffle “The Language?”
	Implicit Displacement Size
	A little FPU
	Of ORI and Friends

