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Abstract

We prove that there are effectively only finitely many real cubic number fields of a given class number
with negative discriminants and ring of algebraic integers generated by an algebraic unit. As an example,
we then determine all these cubic number fields of class number one. There are 42 of them. As a byproduct
of our approach, we obtain a new proof of Nagell’s result according to which a real cubic unit ε > 1 of
negative discriminant is generally the fundamental unit of the cubic order Z[ε].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a real quadratic number field of discriminant dK > 0. Let AK = Z[ε] be its ring of
algebraic integers, where ε = (u + v

√
dK )/2 > 1 is a unit of AK . This is possible if and only if

v = 1, hence dK = u2 ± 4 for some u � 1. In that case, εK � ε = (u + √
dK )/2 �

√
dK + 4 and

RegK � logdK , where εK > 1 is the fundamental unit of K and RegK its regulator. Hence, ac-
cording to the Brauer–Siegel theorem which asserts that log(hK RegK) is asymptotic to 1

2 logdK

as dK → +∞, there are only finitely many such real quadratic number fields K of a given class-
number hK . However, to date, no one knows how to make the Brauer–Siegel effective in the
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Table 1

dK PK(X)

23 X3 − X − 1
31 X3 − X2 − 1
44 X3 − X2 − X − 1
59 X3 − 2X2 − 1
76 X3 − 3X2 + X − 1
83 X3 − 2X2 − 2X − 1
87 X3 − 2X2 − X − 1

107 X3 − 4X2 + 2X − 1
108 X3 − 3X2 − 3X − 1
135 X3 − 3X2 − 1
139 X3 − 6X2 + 4X − 1
140 X3 − 5X2 + 3X − 1
175 X3 − 3X2 − 2X − 1
199 X3 − 4X2 + X − 1
211 X3 − 10X2 + 6X − 1
231 X3 − 5X2 − 4X − 1
247 X3 − 4X2 − 3X − 1
255 X3 − 8X2 + 5X − 1
268 X3 − 13X2 + 7X − 1
335 X3 − 4X2 − X − 1
351 X3 − 6X2 + 3X − 1

dK PK(X)

367 X3 − 7X2 + 4X − 1
527 X3 − 5X2 − 1
671 X3 − 11X2 + 6X − 1
695 X3 − 8X2 − 5X − 1
863 X3 − 7X2 − 4X − 1
959 X3 − 6X2 − X − 1
983 X3 − 7X2 + 2X − 1

1007 X3 − 14X2 + 7X − 1
1175 X3 − 8X2 + 3X − 1
1319 X3 − 11X2 − 6X − 1
1583 X3 − 17X2 − 8X − 1
1871 X3 − 8X2 + X − 1
2039 X3 − 9X2 − 4X − 1
2759 X3 − 12X2 + 5X − 1
2879 X3 − 11X2 + 4X − 1
3671 X3 − 19X2 + 8X − 1
4511 X3 − 16X2 − 7X − 1
5351 X3 − 11X2 − 1
6719 X3 − 27X2 − 10X − 1
7871 X3 − 21X2 + 8X − 1

12 071 X3 + 44X2 − 13X − 1

real quadratic case, without assuming a suitable generalized Riemann hypothesis (however, see
[Bir1]. See also [Bir1] and [Bir2] for a partial solution to the class number one problem for these
two families of real quadratic number fields M = Q(

√
m2 ± 4 )).

In contrast to the real quadratic case, let K = Q(ε) ⊆ R be a real cubic number field with
negative discriminant −dK < 0 whose ring of algebraic integers AK is generated by a unit ε,

i.e. such that AK = Z[ε]. This clearly amounts to saying that AK = Z[εK ], where εK > 1 is
the fundamental unit of K . We will prove that the regulators RegK of such cubic fields K are
� logdK (see Theorem 2). Using an explicit form of the Brauer–Siegel theorem (see [Lou05]),
we will then obtain that the class numbers hK of such cubic fields K are � d

1/2
K / log2 dK with

explicit constants (Theorem 3) and we will solve the class number one problem for these cubic
fields:

Theorem 1. There are 42 non-isomorphic real cubic number fields K ⊆ R of negative dis-
criminants −dK < 0 which have class-number one and whose rings of algebraic integers are
generated by the fundamental unit εK > 1 of K . Namely, the K = Q(εK) given in Table 1, where
εK > 1 is the real root of PK(X).

This generalizes [Lou95, Theorem 2], which dealt with the one parameter family of cubic
polynomials P(X) = X3 + lX − 1.

2. Lower bounds for class numbers

Let K = Q(ε) ⊆ R be a real cubic number field with negative discriminant −dK < 0 whose
ring of algebraic integers AK is generated by a unit ε, i.e. such that AK = Z[ε]. Since Z[ε] =
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Z[−ε] = Z[1/ε] = Z[−1/ε], we may assume that ε > 1. Then, AK = Z[εK ], where εK > 1 is
the fundamental unit of K . The aim of this section is to obtain an explicit lower bound for the
class number hK of such a K (see Theorem 3 below). To obtain such a lower bound, we need
an upper bound on the regulator RegK = log εK of K (see Theorem 2 below). To begin with, we
observe that ε and εK are roots of polynomials of type (T) of negative discriminant −dK < 0,
where we have defined:

Definition 1. A polynomial of type (T) is a cubic polynomial P(X) = X3 − aX2 + bX − 1 ∈
Z[X] which is Q-irreducible (⇔ b 
= a and b 
= −a − 2), of negative discriminant −dP < 0,
with dP = 4(a3 + b3) − a2b2 − 18ab + 27 > 0, and whose only real root εP satisfies εP > 1
(⇔ P(1) < 0 ⇔ b � a − 1).

Lemma 1. If P(X) = X3 − aX2 + bX − 1 is of type (T), then εP − 2 < a < εP + 2, a � 0 and
|b| < 1 + 2

√
εP < 1 + 2

√
a + 2.

Proof. We let εP > 1, ε′
P = α + iβ and ε′′

P = α − iβ = ε′
P denote the three complex roots of a

cubic polynomial P(X) of type (T). Then,

⎧⎪⎨
⎪⎩

1 = εP ε′
P ε′′

P = εP

(
α2 + β2

)
,

b = εP ε′
P + ε′

P ε′′
P + ε′′

P εP = 2αεP + (
α2 + β2

) = 2αεP + (1/εP ),

a = εP + ε′
P + ε′′

P = εP + 2α.

(1)

Using the first equality, we obtain |α| � 1/
√

εP < 1, then −1 < εP −2 < a = εP +2α < εP +2.
It follows that |b| < 2

√
εP + 1/εP < 2

√
a + 2 + 1. �

Lemma 2. Let P(X) be a cubic polynomial of negative discriminant −dP < 0, real root εP > 1
and type (T). It holds that

dP � 4
(
εP + ε

−1/2
P

)4
/εP = 4

(
ε

3/4
P + ε

−3/4
P

)4 � 64ε3
P . (2)

Moreover, εP � εP0 = 1.32471 . . . , where P0(X) = X3 − X − 1 is of type (T) and negative
discriminant −dP0 = −23.

Proof. Using dP = (|εP − ε′
P ||εP − ε′′

P ||ε′
P − ε′′

P |)2 and 1 = εP ε′
P ε′′

P , we obtain (2). Since this
bound is increasing as a function of εP > 1, for a given B > 1 we can list all the polynomials
of type (T) such that εP � B . For example, εP � 1.325 implies dP � 69, and 0 � a � 3 and
0 � |b| � 3 (by Lemma 1), and there are only 8 such polynomials P(X) of type (T): X3 −X −1,
X3 − X2 − 1, X3 − X2 − X − 1, X3 − X2 − 2X − 1, X3 − 2X2 + X − 1, X3 − 2X2 − 1,
X3 −2X2 −3X−1 and X3 −3X2 +2X−1. It follows easily that P(X) = X3 −X−1, for which
dP = 23 and εP = 1.32471 . . . , is the cubic polynomial of type (T) of least root εP > 1. �
Theorem 2. (Compare with [Lou95, Proposition 5].) Let P(X) = X3 −aX2 +bX −1 be a cubic
polynomial of type (T). We have

dP � ε
3/2

/2. (3)
P
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In particular, by Lemma 1, we have

0 � a < 2 + (2dP )2/3 and |b| < 1 + 2(2dP )1/3, (4)

and there are only finitely many cubic polynomials of type (T) of a given discriminant.

Proof. According to Lemma 1, there are only finitely many such polynomials for which εP < 18
and the result holds true for these polynomials. Hence, we may and we will assume that εP � 18.
We stick to the notation introduced in (1). In particular, we have

dP = (∣∣εP − ε′
P

∣∣∣∣εP − ε′′
P

∣∣∣∣ε′
P − ε′′

P

∣∣)2 � 4β2ε4
P

(
1 − ε

−3/2
P

)4

(use the first equality in (1)), and

4β2ε4
P = (

4a − b2)ε2
P − 2bεP + 3

(report the value of α, deduced from the second equality in (1), in the first equality in (1), and
use ε3

P = aε2
P − bεP + 1).

(i) First, assume that b � 0. Then 4a − b2 � 1. In fact, 4a − b2 � 0 yields a contradiction:
Either b = 0 leading to a = b = 0, or b > 0 leading to 0 � 4β2ε4

P = (4a − b2)ε2
P − 2bεP + 3 �

−2bεP + 3 � −2εP + 3 � −2 · 18 + 3 < 0. Further bεP = 2αε2
P + 1 < 2ε

3/2
P + 1, by the first

and second equalities in (1). So we obtain

dP �
(
ε2
P − 2ε

3/2
P + 1

)(
1 − ε

−3/2
P

)4 � ε2
P /2,

for εP � 18.
(ii) Second, assume that b < 0. We set B = −b. Since

g(B) = dP = −4B3 − a2B2 + 18aB + 4a3 + 27

is decreasing in the range B ∈ [1,+∞[ (since g′′ � 0 and g′(1) = −2a2 + 18a − 12 � 0 for
a � 9, and notice that a > εP − 2 � 16) and since g(

√
4a + 1) = −a2 + 2(a − 2)

√
4a + 1 +

27 < 0 (since a > εP − 2 � 16), we get 4a + 1 > b2, i.e. 4a − b2 � 0. Assume first that
4a − b2 � 1. Then,

dP �
(
ε2
P + 2εP 3

)(
1 − ε

−3/2
P

)4 � ε2
P ,

for εP � 5. Otherwise, we are in the special case 4a = b2 and

dP = 4a3/2 + 27 > 4(εP − 2)3/2 + 27 � 2ε2
P ,

for εP � 2. We thank the referee for this streamlined version of our original proof of this theo-
rem. �
Remark 1.

(1) If P(X) = X3 − 12X2 − 7X − 1, then dP = 23, εP = 12.56350 . . . , dP /( 1
2ε

3/2
P ) =

1.03297 . . . .
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(2) When P(X) = X3 − M2X2 − 2MX − 1 we have dP = 4M3 + 27 and M2 < εP < M2 + 1
(M � 2), which imply dP ≈ 4ε

3/2
P .

(3) Let B > 0 be given. Bounds (4) enable us to easily list all the cubic polynomials P(X) of
type (T) such that dP � B .

Proposition 1. (See [Lou05, Corollary 8], and compare with [Lou95, Theorem 1].) Let K be
a non-normal real cubic field of negative discriminant −dK � −79 507. Let hK and RegK =
log εK denote the class number and regulator of K , where εK > 1 is the fundamental unit of K .
Set λ = π

√
3e = 8.971 . . . and μ = (2 + γ − logπ)/2 = 0.716 . . . . It holds that

hK RegK �
√

dK

λ(logdK + μ)
. (5)

Theorem 3. Let K be a non-normal real cubic field of negative discriminant −dK � −79 507.
Assume that AK = Z[εK ], where εK > 1 is the fundamental unit of K . Then,

hK � 3
√

dK

2λ(logdK + μ′)2
,

where λ = π
√

3e = 8.971 . . . and μ′ = (μ + log 2)/2 = 0.70469 . . . . In particular,

dK � 64λ2(loghK + O(log loghK)
)4

h2
K/9,

there are only finitely such K’s of a given class number, and hK > 1 for dK > 2 × 106.

Proof. Use (5) and notice that RegK = log εK � 2
3 log(2dK), by Theorem 2. �

3. When is εP the fundamental unit of the cubic order Z[εP ]?

Let εP be a real cubic algebraic unit of negative discriminant, i.e. εP is a root of a Q-
irreducible cubic polynomial P(X) = X3 − aX2 + bX − 1 whose other two complex roots are
not real. The unit group of the cubic order Z[εP ] is of rank one and we can ask whether εP is
a generator of this unit group. Since Z[εP ] = Z[−εP ] = Z[1/εP ] = Z[−1/εP ], we may assume
that εP > 1, i.e. that P(X) is of type (T). We will give a new proof of the following result due to
Nagell:

Theorem 4. (See also [Nag, Satz XXII].) Let εP > 1 be the real root of a cubic polynomial
P(X) = X3 − aX2 + bX − 1 ∈ Z[X] of negative discriminant −dP < 0 and type (T), and let
ηP > 1 be the generator greater than 1 of the unit group of the cubic order Z[εP ] of negative
discriminant −dP < 0. Then, εP = ηP , except in the following cases:

(1) P(X) = X3 − M2X2 − 2MX − 1, M � 1, in which case εP = η2
P where ηP = εQ > 1 is the

only real root of Q(X) = X3 − MX2 − 1 (and dP = dQ = 4M3 + 27).
(2) dP = 23, ηP = εQ > 1 is the real root of Q(X) = X3 − X − 1 and εP = η2

P , εP = η3
P , εP =

η4
P , η5

P or η7
P are the real roots of P(X) = X3 −2X2 +X −1, P(X) = X3 −3X2 +2X −1,

P(X) = X3 −2X2 −3X−1, P(X) = X3 −5X2 +4X−1 or P(X) = X3 −12X2 −7X−1.
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(3) dP = 31, ηP = εQ > 1 is the real root of Q(X) = X3 − X2 − 1 and εP = η3
P or εP = η5

P

are the real roots of P(X) = X3 − 4X2 + 3X − 1 or P(X) = X3 − 6X2 − 5X − 1.
(4) dP = 44, ηP = εQ > 1 is the real root of Q(X) = X3 − X2 − X − 1 and εP = η3

P is the real
root of P(X) = X3 − 7X2 + 5X − 1.

Proof. Suppose that εP is not the generator greater than 1 of the unit group of the cubic order
Z[εP ]. Let ηP > 1 be this generator and write εP = ηn

P with n � 2. Since Z[εP ] = Z[ηP ] is of
discriminant −dP , εP > 1 and ηP > 1 are real roots of cubic polynomials of type (T) both of
discriminant −dP , and we have

1 < η
3n/2
P = ε

3/2
P � 2dP � 8(ηP + 1/

√
ηP )4/ηP ,

by (2) and (3), and

n < 2 + log 4

logηP

+ 8 log(1 + 1/(ηP
√

ηP ))

3 logηP

(6)

(which is a decreasing function of ηP > 1). Hence, n < 3, i.e. n = 2, for ηP > 5.021. (And n � 11
in any case, by Lemma 2.) Moreover, ηP � 5.021 implies dP � 4(ηP + 1/

√
ηP )4/ηP < 712.

Now, if ηP = εQ > 1 is a root of a cubic polynomial Q(X) = X3 −aX2 +bX −1 of type (T),
then εP = η2

P is a root of P(X) = X3 − (a2 − 2b)X2 + (b2 − 2a)X − 1 and dP = (ab − 1)2dQ.
Hence, dP = dQ if and only if ab = 0 or ab = 2. Assume first that ab = 0. If b = 0, then
Q(X) = X3 − aX2 − 1, P(X) = X3 − a2X2 − 2aX − 1 and dP = dQ = 4a3 + 27. If a = 0,
then Q(X) = X3 + bX − 1, P(X) = X3 + 2bX2 + b2X − 1 and dP = dQ = 4b3 + 27. Since
b � a − 1 = −1 and dQ = 4b3 + 27 > 0, we have b = −1, Q(X) = X3 − X − 1, P(X) =
X3 − 2X2 + X − 1 and dP = dQ = 23. Assume now that ab = 2. Since a � 0 and b � a − 1, we
have a = 2, b = 1, Q(X) = X3 −2X2 +X −1, P(X) = X3 −2X2 −3X −1 and dP = dQ = 23.

Finally, it remains to deal with the case that dP < 712, which implies 0 � a < 2 +
(2 · 712)2/3 < 129, by (4). According to the third point of Remark 1, there are 52 cubic poly-
nomials P(X) of type (T) such that dP < 712. If εP is not the generator of the unit group of
the cubic order Z[εP ], then there exist a unit 1 < ηP ∈ Z[εP ] and n � 2 such that εP = ηn

P ,
and ηP = εQ is the real root of a cubic polynomial Q(X) of type (T). Since Z[εQ] = Z[ηP ] ⊆
Z[εP ] = Z[ηn

P ] = Z[εn
Q] ⊆ Z[εQ], we have Z[εQ] = Z[εP ] and dQ = dP . According to Lemma 3

below, we have either 0 � aQ < aP or aP = aQ, dP = dQ = 23, P(X) = X3 −2X2 −3X−1 and
Q(X) = X3 − 2X2 + X − 1. Now, Table 2 below lists all the d’s less than 712 such that among
the 52 cubic polynomials P(X) of negative discriminants −dP > −712 and type (T) there are at
least two of them of the same negative discriminant −d > −712. From this Table 2, the desired
result follows (for all the polynomials in Table 2 fall in one of the four cases considered in this
Theorem 4). �
Lemma 3. Let P(X) = X3 − aP X2 + bP X − 1 and Q(X) = X3 − aQX2 + bQX − 1 be two
cubic polynomials of type (T). Then, εP � ε2

Q implies aP > aQ, except in the case that Q(X) =
X3 −2X2 +X−1 and P(X) = X3 −2X2 −3X−1 where εP = ε2

Q, aP = aQ and dP = dQ = 23.

Proof. Assume first that εQ > 2.106. Then, we do have aP � εP − 2/
√

εP � ε2
Q − 2/εQ >

εQ + 2/
√

εQ � aQ. Assume now that εQ � 2.106. Then 0 � aQ � 4, by Lemma 1. According to
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Table 2

aP P (X) dP

0 X3 − X − 1 23
1 X3 − X2 − 2X − 1 31
1 X3 − X2 − X − 1 44
1 X3 − X2 − 1 31
2 X3 − 2X2 − 3X − 1 23
2 X3 − 2X2 − 1 59
2 X3 − 2X2 + X − 1 23
3 X3 − 3X2 − 1 135
3 X3 − 3X2 + 2X − 1 23
4 X3 − 4X2 − 4X − 1 59

aP P (X) dP

4 X3 − 4X2 − 1 283
4 X3 − 4X2 + 3X − 1 31
5 X3 − 5X2 − 1 527
5 X3 − 5X2 + 4X − 1 23
6 X3 − 6X2 − 5X − 1 31
7 X3 − 7X2 + 5X − 1 44
9 X3 − 9X2 − 6X − 1 135

12 X3 − 12X2 − 7X − 1 23
16 X3 − 16X2 − 8X − 1 283
25 X3 − 25X2 − 10X − 1 527

Table 3

aQ Q(X) εQ

0 X3 − X − 1 1.32471. . .

1 X3 − X2 − 1 1.46557. . .
1 X3 − X2 − X − 1 1.83928. . .
1 X3 − X2 − 2X − 1 2.14789. . .

2 X3 − 2X2 + X − 1 1.75487. . .
2 X3 − 2X2 − 1 2.20556. . .
2 X3 − 2X2 − X − 1 2.54681. . .
2 X3 − 2X2 − 2X − 1 2.83117. . .
2 X3 − 2X2 − 3X − 1 3.07959. . .

3 X3 − 3X2 + 2X − 1 2.32471. . .
3 X3 − 3X2 + X − 1 2.76929. . .

3 X3 − 3X2 − 1 3.10380. . .
3 X3 − 3X2 − X − 1 3.38297. . .
3 X3 − 3X2 − 2X − 1 3.62736. . .
3 X3 − 3X2 − 3X − 1 3.84732. . .

aQ Q(X) εQ

3 X3 − 3X2 + 2X − 1 2.32471. . .
3 X3 − 3X2 + X − 1 2.76929. . .

3 X3 − 3X2 − 1 3.10380. . .
3 X3 − 3X2 − X − 1 3.38297. . .
3 X3 − 3X2 − 2X − 1 3.62736. . .
3 X3 − 3X2 − 3X − 1 3.84732. . .

4 X3 − 4X2 + 3X − 1 3.14789. . .
4 X3 − 4X2 + 2X − 1 3.51154. . .
4 X3 − 4X2 + X − 1 3.80630. . .
4 X3 − 4X2 − 1 4.06064. . .
4 X3 − 4X2 − X − 1 4.28762. . .
4 X3 − 4X2 − 2X − 1 4.49449. . .
4 X3 − 4X2 − 3X − 1 4.68577. . .
4 X3 − 4X2 − 4X − 1 4.86453. . .

Table 3 which lists the real roots of all the cubic polynomials Q(X) of type (T) with 0 � aQ � 4,
Q(X) is one of the following four polynomials: X3 − X − 1, X3 − X2 − 1, X3 − X2 − X − 1,
or X3 − 2X2 + X − 1. Now, in these four cases, there is no P(X) of type (T) such that εP � ε2

Q

and 0 � aP � aQ. Indeed,
(i) If Q(X) = X3 −X−1 then aQ = 0. Hence, we would have aP = 0, P(X) = X3 −X−1 =

Q(X) and εP = εQ < ε2
Q.

(ii) If Q(X) = X3 − X2 − 1 then aQ = 1 and ε2
Q = 1.75487 . . . . Hence, we would have

0 � aP � 1, P(X) would be one of the first four polynomials in this table and none of them
satisfies εP � ε2

Q.

(iii) Same line of reasoning if Q(X) = X3 − X2 − X − 1.
(iv) If Q(X) = X3 − 2X2 +X − 1 then aQ = 2 and ε2

Q = 3.07959 . . . . Hence, we would have
0 � aP � 2, P(X) would be one of the first nine polynomials in this table and none of them but
the last one satisfies εP � ε2

Q. �
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4. When is Z[εP ] the ring of algebraic integers of the cubic number field Q(εP )?

Lemma 4. Let εP be a complex root of a Q-irreducible polynomial P(X) = X3 −aX2 +bX−c ∈
Z[X] of discriminant ΔP . Let AK be the ring of algebraic integers of the cubic number field K =
Q(εP ). Then, AK = Z[εP ] if and only if for all primes p � 2 such that p2 divides ΔP we have
P(α) 
≡ 0 (mod p2), where α ∈ Z is any rational integer such that P(α) ≡ P ′(α) ≡ 0 (mod p).

Proof. This is a consequence of Dedekind’s criterion (see [Coh, Theorem 6.1.4]). See also [DF,
Section 17, Theorem I]. �
Theorem 5. Let εP be a complex root of P(X) = X3 − aX2 + bX − 1 ∈ Z[X]. Assume that
P(X) is Q-irreducible (⇔ b 
= a and b 
= −a − 2). Let AK be the ring of algebraic integers of
the cubic number field K = Q(εP ). Then, AK = Z[εP ] if and only if the four following conditions
are satisfied:

(1) if a ≡ b ≡ 1 (mod 2), then a 
≡ b (mod 4);
(2) if a ≡ b ≡ 0 (mod 3), then a 
≡ b (mod 9);
(3) if a ≡ b ≡ −1 (mod 3), then a + b 
≡ −2 (mod 9);
(4) if p > 3 is prime and p2 divides dP , then 3b ≡ a2 (mod p) but 2a3 −9ab+27 
≡ 0 (mod p2).

Proof. First, 22 divides dP if and only if a ≡ b ≡ 1 (mod 2), in which case we may take α = 1
for which P(α) = −a + b.

Second, 32 divides dP if and only if a ≡ b ≡ 0 (mod 3), in which case we may take α = 1 for
which P(α) = −a + b, or a ≡ b ≡ −1 (mod 3), in which case we may take α = −1 for which
P(α) = −a − b − 2.

Third, we assume that p > 3 and p2 divides dP . Since

9P(X) = (3X − a)P ′(X) + 2
(
3b − a2)X + ab − 9,

P (α) ≡ P ′(α) ≡ 0 (mod p) implies 2(a2 − 3b)α ≡ ab − 9 (mod p). If we had 3b 
≡ a2 (mod p),
using 23(a2 − 3b)3P((ab − 9)/(2(a2 − 3b2))) = (2a3 − 9ab + 27)dP , we would obtain P(α) ≡
0 (mod p2). Hence, 3b ≡ a2 (mod p). Since p divides

27ΔP = −4
(
27a3 + (3b)3) + 3a2(3b)2 + 162a(3b) − 729 ≡ −(

a3 − 27
)3

(mod p),

we have a3 ≡ 27 (mod p), 27P(X) ≡ (3X − a)3 (mod p) and 3α ≡ a (mod p). Since
Q′(a) = −3a2 + 9b ≡ 0 (mod p), where Q(X) = 27P(X/3) = X3 − 3aX2 + 9bX − 1, we
obtain 27P(α) = Q(3α) ≡ Q(a) = −2a3 + 9ab − 27 
≡ 0 (mod p2). �
5. Proof of Theorem 1

To complete the proof of Theorem 1, it remains to generate all such fields K with dK � 2×106

(by Theorem 3) and then to compute their class numbers. To complete this task, we first generate
all the cubic polynomials P(X) = X3 − aX2 + bX − 1 of type (T) with dP � 2 × 106. We
first observe that according to (4) we have 0 � a < 2 + (2dP )2/3 < 25 201, and for any given
such a, Lemma 1 gives a small upper bound on |b|. Now, for a given such P(X) of real root
εP > 1, we use Theorem 5 to determine whether Z[εP ] is the ring of algebraic integers of the
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Table 4

a b dP

0 −1 23
1 0 31
1 −1 44
1 −2 31
2 1 23
2 0 59
2 −1 87
2 −2 83
2 −3 23
3 2 23
3 1 76
3 0 135
3 −2 175
3 −3 108

a b dP

4 3 31
4 2 107
4 1 199
4 −1 335
4 −3 247
4 −4 59
5 4 23
5 3 140
5 0 527
5 −4 231
6 4 139
6 3 351
6 −1 959
6 −5 31

a b dP

7 5 44
7 4 367
7 2 983
7 −4 863
8 5 255
8 3 1175
8 1 1871
8 −5 695
9 −4 2039
9 −6 135

10 6 211
11 6 671
11 4 2879
11 0 5351

a b dP

11 −6 1319
12 5 2759
12 −7 23
13 7 268
14 7 1007
16 −7 4511
17 −8 1583
19 8 3671
21 8 7871
25 −10 527
27 −10 6719
44 13 12 071

121 −22 5351

real cubic field K = Q(εP ). If so, we can finally easily compute its class number hK (by using
the method explained in [BLW,BWB], [Lou95, Section 3] and [Lou01, Section 3]), and get rid
of the polynomials P(X) for which hK > 1. As a result of our computation, Table 4 provides all
the cubic polynomials of type (T) such that (i) dP � 2 × 106 (there are 2972 of them), (ii) Z[εP ]
is the ring of algebraic integers of the real cubic field KP = Q(εP ) (there are 2214 of them) and
(iii) the class number of KP is equal to one (there are 55 of them). The discriminants which
appear at least twice are in bold face letters. However, according to Theorem 4, any two fields in
Table 4 with the same discriminant are equal. This observation completes the proof of Theorem 1.
Notice however that P(X) = X3 − 9X2 − X − 1 and Q(X) = X3 − 15X2 − 7X − 1 both have
type (T) and discriminant −dP = −dQ = −3020, but whereas KP = Q(εP ) and KQ = Q(εQ)

are both of discriminant −3020 and class number 3, they are not isomorphic (since AKP
= Z[εP ]

and AKQ
= Z[εQ] and since P(X) is irreducible modulo p = 11 whereas Q(X) = (X + 2)(X +

6)(X+10) modulo 11, it follows that the prime p = 11 remains inert in KP but splits completely
in KQ). We also refer the reader to [Ger, Theorem 2] which proves that for a given Δ < 0 there
is generally at most one cubic field K ⊂ R of negative discriminant −dK = Δ and class number
hK not divisible by 3.

The referee communicated to us a PARI-GP program for doing these computations. Both
computations yielded the same results.

6. Conclusion

Say that a quartic polynomial P(X) is of type (T) if it is of the form P(X) = X4 −aX3 +bX−
cX + 1 ∈ Z[X], is Q-irreducible, has no real root, which implies dP > 0, and if the associated
quartic number field KP is not a cyclotomic field. Notice that the unit rank of KP is equal
to 1. Let α1, ᾱ1, α2 and ᾱ2 be its four complex roots. Since KP is not one of the three quartic
cyclotomic fields Q(ζn) with n ∈ {8,10,12}, at least one out the four complex roots of P(X) has
absolute value not equal to one (see [Was97, Lemma 1.6]). Hence, we may assume that |α1| > 1,
which implies |α2| < 1. From now on, we let εP (= α1 or ᾱ1) be any one of the two conjugate
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complex roots of P(X) of absolute value greater than one. Is that true that, as in Theorem 2,
there exist c1 > 0 and c2 > 0 such that for any quartic polynomial P(X) of type (T) we have

dP � c1|εP |c2 ?

In that case, using [Lou05] it should be possible to prove, as in Theorem 3, that if K is ranges
over the non-cyclotomic totally complex quartic fields such that their rings of algebraic integers
are of the form AK = Z[εK ], where εK with |εK | > 1 is the fundamental unit of K , then its class
number hK goes explicitly to infinity with dK .
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